## Table Top Totem Pole Critical Thinking Questions and Answer Sheet

## Questions for the table top totem pole activity:

## Beginning Level

Describe the shapes you used in your design. Can you find a shape that has exactly 4 sides? How about 5 sides? Did you include any rectangles or triangles?
Look around the room. Can you find objects that have mirror symmetry (one line of symmetry)?

## Intermediate Level

If the strip is 9 " long and you need to divide it into 3 equal sections lengthwise, how long will each section be? How did you figure it out?

## Advanced Level

If the length of the strip is 9 " and the width is 3 ", what is the total area of the strip? How did you figure it out?

If we want our totem pole to be 1 ' tall, how many 9 " $\times 3$ " strips will we need? How many for 2 ' tall? How about 3' tall? Do you notice a pattern? Can you explain the pattern?

## Questions for the original totem pole activity:

## Beginning Level

Describe the shapes you used in your design. Can you find a shape that has exactly 4 sides? How about 5 sides? Did you include any rectangles or triangles?

Look around the room. Can you find objects that have mirror symmetry (one line of symmetry)?

## Intermediate Level

If the poster board strip is 24 " long and you need to divide it into 3 equal sections lengthwise, how long will each section be? How did you figure it out?

## Advanced Level

If the length of the poster board strip is 24 " and the width is $6 "$, what is the total area of the strip? How did you figure it out? (Use the scrap paper, if necessary.)

If we want our totem pole to be 6 ' tall, how many 24 " x 6 " strips will we need? How many for 7 ' tall? How about 8' tall? Do you notice a pattern? Can you explain the pattern?

Challenge! Determine the volume of our totem pole if the pole is 7 ' tall. (Reminder - the formula for the area of a circle is: $A=\pi r^{2}$ )

## Table Top Totem Pole Answer Sheet

Beginning: Students will have a variety of answers depending on the designs they make and what they see in their environment.

Intermediate: $9^{\prime \prime} \div 3=3$ " sections. Students will have a variety of answers to how they arrived at the answer.
Advanced: The total area of the strip is 27 square inches: $9^{\prime \prime} \times 3^{\prime \prime}=27 \mathrm{in}^{2}$. Again, students will have a variety of answers as to how they figured it out.

One way to figure out the answer to the second part of the problem is to convert everything into a common unit of measurement - in this case, inches: $1^{\prime} \div 3^{\prime \prime}$ becomes $12^{\prime \prime} \div 3^{\prime \prime}=4$ strips. Therefore $2^{\prime} \div 3^{\prime \prime}$ becomes $24^{\prime \prime} \div 3^{\prime \prime}=8$ strips and $3^{\prime} \div 3^{\prime \prime}$ becomes $36^{\prime \prime} \div 3^{\prime \prime}=12$ strips.

## Totem Pole Answer Sheet

Beginning: Students will have a variety of answers depending on the designs they make and what they see in their environment.

Intermediate: $24^{\prime \prime} \div 3=8^{\prime \prime}$ sections. Students will have a variety of answers to how they arrived at the answer.

Advanced: The total area of the strip is 144 square inches: $24 \prime \times 6$ " $=144 \mathrm{in}^{2}$. Again, students will have a variety of answers as to how they figured it out.

One way to figure out the answer to the second part of the problem is to convert everything into a common unit of measurement - in this case, inches: $6^{\prime} \div 6^{\prime \prime}$ becomes $72^{\prime \prime} \div 6^{\prime \prime}=12$ strips. Therefore $7^{\prime} \div 6^{\prime \prime}$ becomes $84^{\prime \prime} \div 6^{\prime \prime}=14$ strips and $8^{\prime} \div 6$ " becomes $96^{\prime \prime} \div 6$ " $=16$ strips. As written by a $7^{\text {th }}$ grader: "Since one foot has two sets of 6 inches in it, you just multiply the number of feet by 2."

Challenge: One way to determine the diameter is to divide the circumference by 3.14 . Since we know that the circumference is 24 ", we divide that by 3.14 to get approximately 7.64 . We could round this to $7.5^{\prime \prime}$ to make it easier to work with. Half of $7.5^{\prime \prime}$ is $3.75^{\prime \prime}$. This represents the radius. Now it's just a matter of plugging numbers into the formula, $A=\pi r^{2}$. $A=3.14 \times 3.75^{2}$. $A=3.14 \times$ (approximately) $14=$ (approximately) $44 \mathrm{in}^{2}$. Now that we know the area of the base of the cylinder, we can multiply it by the height to get the volume: $44 \times 84=3,696 \mathrm{in}^{3}$.

Note: Some students will use the ruler to determine the diameter and thus the radius. Because it is difficult to be exact this way, answers may vary slightly.

